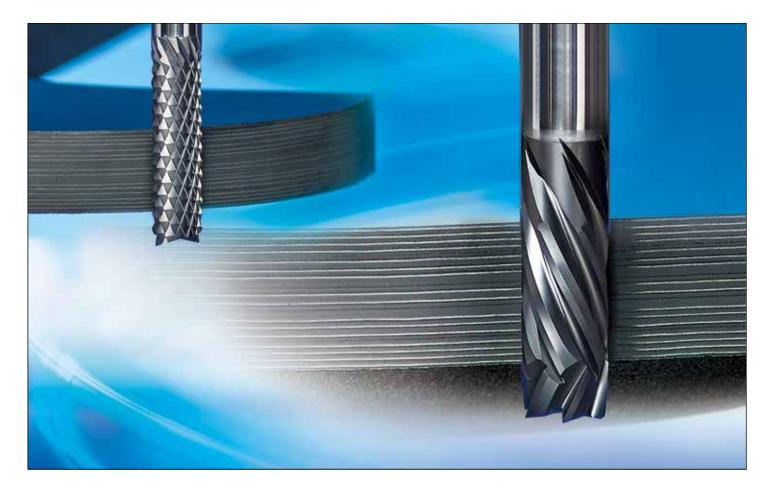


Composite Router Endmill

Router Endmill Series for Machining Composite Materials


High Quality Machining

Minimized machining troubles with our new design, inhibiting delamination, splintering and burrs

Excellent Tool Life

The nano-crystalline diamond coating provides exceptional resistance to wear and flaking

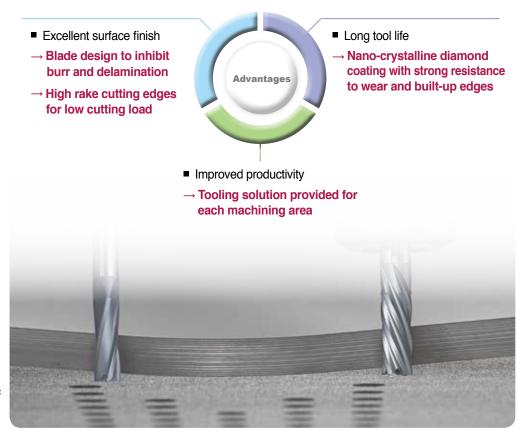
Composite Materials: CFRP/GFRP

Composite Router Endmills for Machining Composite Materials (CFRP/GFRP) Composite Router Endmill

CCDR/CCR

With a growing number of environmental regulations and the increasing demands for higher efficiency and lighter weight, more and more composite materials have been used in various industrial fields such as automotive, aerospace, wind power and energy industries.

A composite material is combined materials of two or more kinds for better machining properties. Typical examples are **CFRP**⁽¹⁾ consisting of carbon fiber and resin, and **GFRP**⁽²⁾ consisting of glass fiber and resin. They are light and have excellent mechanical properties featuring strong resistance to corrosion and fatigue.


Unlike general metals, CFRP and GFRP generate large amounts of chips in the form of scraps. Due to the high hardness and low thermal conductivity of the fiber-reinforced materials, high-temp cutting heat is generated during machining and tools wear out rapidly. In addition, their high strength, high elastic modulus, and inhomogeneity between dissimilar materials cause excessive vibrations, and the composite structures cause machining troubles such as delamination, splintering and burrs.

KORLOY's diamond-coated grade **ND2100** features a nano-crystalline diamond coating that has strong resistance to wear and friction, resulting in outstanding tool life.

CCDR is a dual-helix-type finishing endmill, which is designed to inhibit flaking from upper and lower faces of workpieces in compression cutting, so that high quality contouring and slotting can be achieved with excellent surface finish.

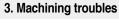
CCR is a roughing endmill with down-cut blade design of low vibrations and low cutting resistance, which is suitable for contouring, slotting and parting off thin sheet metals.

CCLR/CCRR are low-helix-type finishing endmills with low axial cutting resistance that inhibits fiber tears and burrs, excelling in contouring and slotting with superior surface finish.

(1) CFRP

: Carbon Fiber Reinforced Plastic (2) **GFRP**

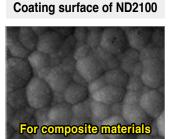
: Glass Fiber Reinforced Plastic


ND2100 (Diamond-coated grade for machining composite materials)

Problems When Machining Carbon Fiber Composite Materials

- Relief surface is quickly worn out due to carbon fiber reinforcing agents.
- Coating films flake off due to impact on cutting edges caused by cut carbon fiber chips.
- Machining troubles are caused by worn-out and dulled cutting edges.

1. Wear on relief surface



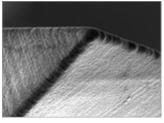
Development of ND2100 (Diamond-coated grade for machining composite materials)

High-hardness nano-crystalline diamond coating ideally suited for machining composite materials

Coating surface of ND3000

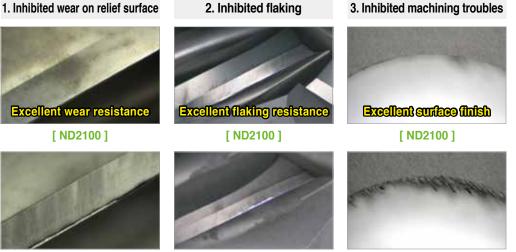
Stable tool life due to excellent resistance to wear and flaking

- Nano-crystalline structure
- Excellent friction resistance
- Excellent wear resistance and surface finish


surface finish

Development Effect

For graphite and ceramic

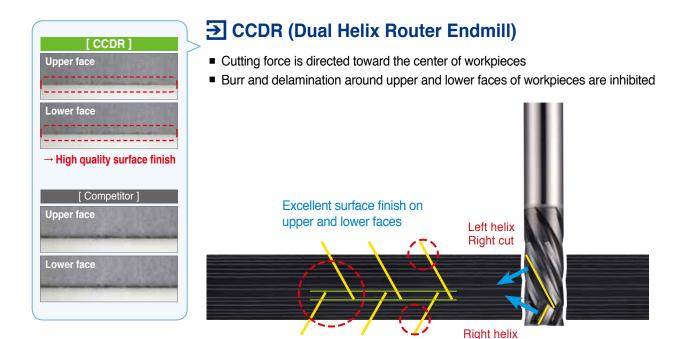

- Substrate specialized for diamond coating
- Excellent flaking resistance

Cutting edges of ND2100

- Cutting edges stay sharp
- Excellent cutting performance

- Nano-crystalline structure
 → strong wear resistance
- Substrate specialized for diamond coating → Improved flaking resistance
- Cutting edges remain in high rake
- → Exceptional surface finish

[Competitor]


[Competitor]

[Competitor]

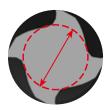
Router Endmills for Machining Composite Materials

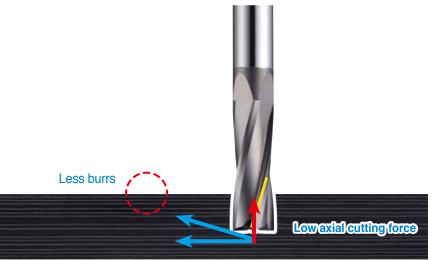
→ Features

- Router endmills optimized for machining composite materials (CFRP/GFRP)
- High-hardness nano-crystalline diamond coating for excellent tool life
- Blade design to inhibit delamination, burr and splintering

→ CCR (Router Endmill)

- Diamond-cut edges for low cutting load
- Down-cut blade design prevents workpiece release and strengthens the vaccuum clamping force.


Right cut



→ CCLR (Low Helix Router Endmill)

- Exellent machinability and high rigidity due to high rake cutting edges and large core web
- Low helix design to reduce the axial force and inhibit burr creation
- Large core web High rigidity

[Large core web]

→ CCRR (Reverse Helix Router Endmill)

- Multi-flute design (6F, 8F) enables highly efficient finishing.
- Down-cut blade design prevents workpiece release and strengthens the vaccuum clamping force.

➔ Application Examples

CFRP Beam		
Cutting conditionsTool	vc (m/min) = 200, fz (mm/t) = 0.05, ap (mm) = CCR2080-075	= 6, ae (mm) = 2, dry
CCR (Router) Competitor	Over 20M machining 8.5M machining	100% longer
Competitor	8.5M machining	longer

100% longer cutting time compared to the competitor

CFRP Plate		
-	vc (m/min) = 200, fz (mm/t) = 0.08, ap (mm) CCRR805000	= 20, ae (mm) = 0.3, dry
CCRR (Reverse helix) Competitor	40M machining 20M machining	100% longer

100% longer cutting time compared to the competitor

CFRP Plate

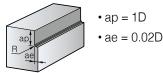
 Cutting conditions
 vc (m/min) = 200, fz (mm/t) = 0.08, ap (mm) = 20, ae (mm) = 0.3, dry

 Tool
 CCDR605000

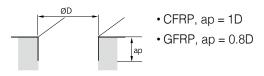
CCDR (Dual helix)	150M machining	20%	
Competitor	125M machining	longer	

20% longer cutting time compared to the competitor

Example 2 Recommended Cutting Conditions (CCDR)


Division	C	CDR (Should	der roughing	a)	CCDR (Shoulder finishing)					
Workpiece	CF	RP	GF	RP	CF	RP	GFRP			
Cutting conditions Tool diameter (Ø)	RPM n (min⁻¹)			RPM n (min⁻¹)	Feed vf (mm/min)	RPM Feed n (min ⁻¹) vf (mm/m				
6	7,960	1,114 3,980 557		557	10,610	1,910	5,310	743		
8	5,970	1,075	2,980	536	7,960	1,910	3,980	716		
10	4,770	1,717	2,390	860	6,370	3,058	3,180	1,145		
12	3,980	1,672	1,990	836	5,310	3,027	2,650	1,113		

Application tip (shoulder roughing)


• ap = 1D • ae = 0.4D

Application tip (shoulder finishing)

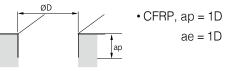
Division	CCDR (Slotting)								
Workpiece	CF	RP	GF	RP					
Cutting conditions Tool diameter (Ø)	RPM n (min⁻¹)	Feed vf (mm/min)	RPM n (min⁻¹)	Feed vf (mm/min)					
6	5,310	531	3,710	371					
8	3,980	478	2,790	335					
10	3,180	763	2,230	535					
12	2,650	716	1,860	502					

Application tip (slotting)

***Notice**

- Please adjust the recommended cutting conditions properly, according to the types of CFRP or GFRP, the workpiece shapes, clamping conditions, and the rigidity of your machines.
- In case of machining troubles such as peeling, burrs and flaking, reduce feed rate by the same ratio.
- It is highly recommended to use purified water for high-pressure wet machining because cutting heat may cause troubles.
- Please provide against dust before machining begins.

→ Recommended Cutting Conditions (CCR)


Division		CCR (Should	er roughing)	CCR (Slotting)					
Workpiece	CF	RP	GFRP		CF	RP	GFRP			
Cutting conditions Tool diameter (Ø)	RPM n (min⁻¹)	Feed vf (mm/min)	RPM n (min⁻¹)	Feed vf (mm/min)	RPM n (min⁻¹)	Feed vf (mm/min)	RPM n (min ⁻¹)	Feed vf (mm/min)		
4	15,920	1,020	7,960	510	7,960	340	3,980	170		
5	12,730	1,270	6,370	640	6,370	430	,	210		
6	10,610	1,270	5,310	640	5,310	430		210		
8	7,960	1,340	3,980	670	3,980	450	1,990	230		
10	6,370	1,530	3,180	760	3,180	510	1,590	260		
12	5,310	1,720	2,650	860	2,650	580	1,330	290		

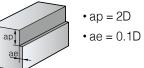
Application tip (Shoulder roughing)

Application tip (Slotting)

• ap = 2D • ae = 0.35D

→ Recommended Cutting Conditions (CCLR/CCRR)

Division	CCL	R/CCRR (Sho	oulder rougi	ning)	CCLR/CCRR (Shoulder finishing)					
Workpiece	CF	RP	GF	GFRP		RP	GFRP			
Cutting conditions Tool diameter (Ø)	RPM n (min⁻¹)			Feed vf (mm/min)	RPM n (min⁻¹)	Feed vf (mm/min)	RPM n (min ⁻¹)	Feed vf (mm/min)		
4	15,920	1,530	7,960	510	15,920	1,275	7,960	380		
5	12,730	1,530	0 6,370 510 12,730		1,275	6,370	380			
6	10,610	1,530	5,310	510	10,610	1,275	5,310	380		
8	7,960	1,530	3,980	510	7,960	1,275	3,980	380		
10	6,370	1,530	3,180	510	6,370	1,275	3,180	380		
12	5,310	1,530	2,650	510	5,310	1,275	2,650 380			


* In case of CCRR, increase feed rate, vf (mm/min) by 30%.

Application tip (Shoulder roughing)

• CFRP, ap = 2D, ae = 0.4 • GFRP, ap = 2D, ae = 0.3

Application tip (Shoulder finishing)

***Notice**

- Please adjust the recommended cutting conditions properly, according to the types of CFRP or GFRP, the workpiece shapes, clamping conditions, and the rigidity of your machines.
- In case of machining troubles such as peeling, burrs and flaking, reduce feed rate by the same ratio.
- It is highly recommended to use purified water for high-pressure wet machining because cutting heat may cause troubles.
- Please provide against dust before machining begins.

➔ CCDR4000/6000 (Flat)

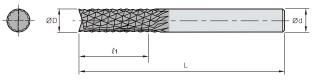
				_	Workpiece					
	Helix Grade h5	ØD	Tolerance	-	CFRP	GFRP	CFRP/ Metal stacks	Honey-combs		
	Angle ND2100 shar	nk Ø6~Ø12	0.00~ -0.03 mm		O	0				
* Metal: Aluminum or titanium, etc. (mm)										
Designation		ØD	Ød	Q1	Q 2	L		Fig		
CCDR	4060-065	6	6	3	18	65		1		
	4080-075	8	8	4	24	75		1		
CCDR	6100-085	10	10	5	30	85		2		
6	6120-100	12	12	6	36	100		2		
			l [

Helix Angle 30%-30°

h5

shank

 ØD
 Tolerance


 Ø0.250~Ø0.500
 0.0000 ~ -0.0012 inch

							(inch)
	Designation	ØD	Ød	Q1	Q2	L	Fig
CCDR	402500	1/4 0.250	0.250	0.125	0.750	2.500	1
	402500L	1/4 0.250	0.250	0.125	1.500	4.000	1
CCDR	603750	3/8 0.375	0.375	0.125	1.000	3.250	2
	603750L	3/8 0.375	0.375	0.125	1.500	4.000	2
	605000	1/2 0.500	0.500	0.125	1.000	3.250	2
	605000L	1/2 0.500	0.500	0.125	1.500	4.000	2

⇒ CCR2000 (Flat)

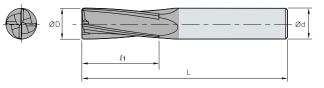
							[Wo	orkpiece	
	Angle ND2100 share	5	ØD	Tolerance				CFRP	GFRP	CFRP/ Metal stacks	Honey-combs
-27		ank Ø	4~Ø12 -0	-0.02~ -0.08 mm				0 0			
* Metal: Aluminum or titanium, etc. (n											(mm)
Designation			ØD			Ød		Q1		L	
CCR	2040-050		4			4		12		50	
$\overline{2}$	2050-050		5			5		15		50	
	2060-065		6			6	18			65	
	2080-075		8			8		24		75	
	2100-085		10		10		30			85	
	2120-100		12			12		36		100	

(inch)

					(11011)
	Designation	ØD	Ød	Q1	L
CCR	202500	1/4 0.250	0.250	0.750	2.500
	202500L	1/4 0.250	0.250	1.500	4.000
	203750	3/8 0.375	0.375	1.000	3.250
	203750L	3/8 0.375	0.375	1.500	4.000
	205000	1/2 0.500	0.500	1.000	3.250
	205000L	1/2 0.500	0.500	1.500	4.000

[Endface Tooth]

Without an endface tooth (For shouldering)*


With 4~6F endface teeth (For facing and Blind-hole machining)*

* Inserts marked with an asterisk (*) are available for a custom-made order.

➔ CCLR4000 (Flat)

24

30

36

										Wo	orkpiece	
	Angle NI	Grade	5	ØD	Tolerance				CFRP	GFRP	CFRP/	
		ND2100 sha	-	4~Ø12	0.00~ -0.03 m	m		OTT		-	Metal stacks	
	15°	3112		4~012 0.00~ -0.03 11111					0	O		
								:	Metal: Alum	inum or tita	nium, etc.	
									•			Ì
	Designation			ØD			Ød		l l1		L	
	CCLR	4040-050			4		4		12		50)
	UULII	-0-0 000			•		•					
		4050-050			5		5		15		50)
					6	6			18		65	
	~	4060-065		6			U		10		00	,

8

10

12

8

10

12

Helix Angle 15°

Grade ND2100

4080-075

4100-085

4120-100

ØD h5 shank Ø0.250~Ø0.500

Tolerance 0.0000~ -0.0012 inch

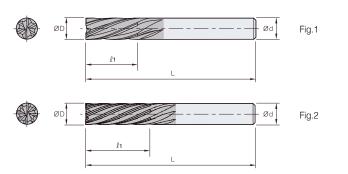
(inch)

Honey-combs

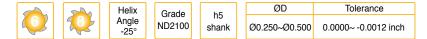
75

85

100


(mm)

Designation		ØD	Ød	Q1	L	
CCLR	402500	1/4 0.250	0.250	0.750	2.500	
	402500L	1/4 0.250	0.250	1.500	4.000	
	403750	3/8 0.375	0.375	1.000	3.250	
	403750L	3/8 0.375	0.375	1.500	4.000	
	405000	1/2 0.500	0.500	1.000	3.250	
	405000L	1/2 0.500	0.500	1.500	4.000	


➔ CCRR6000/8000 (Flat)

					Workpiece				
	Helix Grade h5	ØD	Tolerance		CFRP	GFRP	CFRP/ Metal stacks	Honey-combs	
Angle ND2100 shan		nk Ø6~Ø12	Ø6~Ø12 0.00~ -0.03 mm		0	0	Wetar stacks		
					* Metal: Alum	ninum or titaniu	m, etc.	(mm)	
	Designation	ØD	Ød	Q1		L		Fig	
CCRR	6060-065	6	6	18		65		1	
6	6080-075	8	8	24		75		1	
\sim									
CCRR	8100-085	10	10	30	30 85		2		
	8120-100	12	12	36		100		2	

(inch)

						(incn)
Designation		ØD	Ød	Q1	L	Fig
CCRR	602500	1/4 0.250	0.250	0.750	2.500	1
6	602500L	1/4 0.250	0.250	1.500	4.000	1
CCRR	803750	3/8 0.375	0.375	1.000	3.250	2
	803750L	3/8 0.375	0.375	1.500	4.000	2
	805000	1/2 0.500	0.500	1.000	3.250	2
	805000L	1/2 0.500	0.500	1.500	4.000	2

Holystar B/D, 1350, Nambusunhwan-ro, Geumcheon-gu, Seoul, 08536, Korea Tel: +82-2-522-3181 Fax: +82-2-522-3184, +82-2-3474-4744 Web: www.korloy.com E-mail: export@korloy.com

(A) KORLOY AMERICA

620 Maple Avenue, Torrance, CA 90503, USA Tel: +1-310-782-3800 Toll Free: +1-888-711-0001 Fax: +1-310-782-3885 www.korloyamerica.com E-mail: sales@korloy.us

& KORLOY EUROPE

 Gablonzer Str. 25-27, 61440 Oberursel, Germany

 Tel: +49-6171-277-83-0
 Fax: +49-6171-277-83-59

 www.korloyeurope.com
 E-mail: sales@korloyeurope.com

(A) KORLOY INDIA

 Plot NO.415, Sector 8, IMT Manesar, Gurgaon 122051, Haryana, INDIA

 Tel: +91-124-4391790
 Fax: +91-124-4050032

 www.korloyindia.com
 E-mail: sales.kip@korloy.com

💩 KORLOY BRASIL

Av. Aruana 280, conj.12, WLC, Alphaville, Barueri, CEP06460-010, SP, Brasil Tel: +55-11-4193-3810 E-mail: vendas@korloy.com

TN62-EM-01 / 20180330